3D Image-based Plant Phenotyping Research: Dataset, Algorithm and Analysis

Sruti Das Choudhury1,2, Srikanth Maturu2, Vincent Stoeger3, Ashok Samal2 and Tala Awada1
1School of Natural Resources, 2Department of Computer Science and Engineering, 3Agricultural Research Division
University of Nebraska-Lincoln, USA

Introduction

- Image-based plant phenotyping facilitates the extraction phenotypic traits non-invasively by analyzing a large number of plants in a short time period with precision.
- The variations in phylloaxy and self-occlusions pose challenges to accurate estimation of phenotypes from 2D images.
- We introduce an algorithm to reconstruct a 3D model of a plant for accurate phenotype estimation.
- We provide a new taxonomy of phenotypes computed from 3D plant model.
- To evaluate our method and stimulate 3D plant phenotyping research, we publicly release a benchmark dataset called University of Nebraska-Lincoln 3D Plant Phenotyping Dataset (UNL-3DPPD).

Method

- The plant images for all views are segmented using background subtraction followed by color based thresholding techniques.
- Space curving approach based on orthographic projection \cite{2} is used to reconstruct the 3D model of the plant.

![Fig. 1: Segmentation process.](Image)

![Fig. 2: Different views of a reconstructed 3D model of a plant.](Image)

Dataset

- To evaluate the algorithm, we publicly release a benchmark dataset called UNL-3DPPD.
- The images of the dataset are captured using LemnaTec Scanalyzer 3D high throughput plant phenotyping facility in the UNL.
- The dataset contains RGB images of 15 maize plants and 13 sorghum plants for 27 days from 10 views.

![Fig. 4: LemnaTec Scanalyzer 3D plant phenotyping system.](Image)

![Fig. 5: Sample images of UNL-3DPPD.](Image)

Phenotype Computation

- 3D plant model is reconstructed to compute 3D phenotypes. A benchmark dataset called UNL-3DPPD is introduced to evaluate our method.

Conclusion

The authors would like to thank the Digital Agriculture - Unmanned Aircraft Systems, Plant Sciences, and Education (UAASPSE) seed grant sponsored by the NSF, for funding this research.

Acknowledgement

References

\cite{1} S.D. Choudhury, S. Maturu, V. Stoeger, A. Samal, T. Awada, 3D Image-based Plant Phenotyping Research: Dataset, Algorithm and Analysis, Plant Methods, under review, 2018.