Holistic and Component Plant Phenotyping Analysis using Visible Light Image Sequences

Sruti Das Choudhury1,2, Srinidhi Bashyam2, Vincent Stoerger3, Ashok Samal2 and Tala Awada1,3
1School of Natural Resources, 2Department of Computer Science and Engineering, 3Agricultural Research Division
University of Nebraska-Lincoln, USA. Contact: Sruti Das Choudhury S.D.Choudhury@unl.edu

Introduction

- Image-based plant phenotyping facilitates the extraction of desirable morphological and biophysical traits by analyzing a large number of plants in short time period non-invasively.
- It is broadly classified into: holistic and component phenotypes.
- Holistic phenotypes consider the whole plant as a single object, whereas component phenotypes are computed by considering individual components of a plant, i.e., leaves and stem.
- An algorithm is proposed to track each leaf from its emergence during vegetative stage life cycle and measure its length on each day.

Holistic Phenotypes:

\[\text{Plant Aspect Ratio} = \frac{\text{Height of BR at side view}}{\text{Diameter of MEC at top view}} \]

\[\text{Bi-angular Convex-hull Area Ratio} = \frac{\text{Area}_{\text{convex-hull}} \text{ at side view } 0^\circ}{\text{Area}_{\text{convex-hull}} \text{ at side view } 90^\circ} \]

where, BR: Bounding Rectangle, MEC: Minimum Enclosing Circle

Component Phenotypes:

- To achieve maximum efficiency, the view angle at which line of sight of the camera is perpendicular to the axis of the leaves, is selected.
- The basis of leaf tracking is: (a) leaf emergence strictly alternates in terms of direction; (b) leaves emerge using a bottom-up approach [1].
- The foreground, i.e., the plant, is segmented based on frame differencing technique and color based thresholding.
- The binary plant is skeletonized, i.e., reduced to one-pixel wide lines, using fast marching algorithm [2].
- The skeleton is represented by a graph \(G = (V, E) \), where \(V \) is the set of vertices and \(E \) is the set of edges.
- The vertices with degree 3 are identified as leaf-tips and with degree 3 or more are identified as junctions.
- The stem is formed by iteratively traversing the graph along a connected path of junctions.
- Each leaf is identified by using a graph traversal algorithm from leaf-tip until it meets at the junction.

Results

Figure 3: Bi-angular Convex-hull Area Ratio (provides information on phyllotaxy)

Figure 4: Plant Aspect Ratio (provides information on canopy architecture)

Figure 5: The overall process of leaf detection

Dataset

- To evaluate the algorithm, we publicly release a benchmark dataset called University of Nebraska-Lincoln Component Plant Phenotyping Dataset (UNL-CPPD).
- The images of the dataset are captured using LemnaTec Scanalyzer 3D high throughput plant phenotyping facility in the UNL.
- The dataset contains RGB images of 13 maize plants for 27 days.
- We release the following ground-truth information for each original image: (a) the co-ordinates of leaf-tips and leaf-junctions; (b) the total number leaves present (which are numbered in order of emergence).

Figure 6: LemnaTec Scanalyzer 3D Plant Phenotyping System

Figure 7: UNL-CPPD ground-truth

References

Conclusion

A set of new holistic and component phenotypes are proposed using computer vision techniques. Individual leaves can be tracked providing growth pattern of leaves. A benchmark dataset called UNL-CPPD is released with ground-truth.

Acknowledgement

The authors would like to thank the Agricultural Research Division in the Institute of Agriculture and Natural Resources of the University of Nebraska-Lincoln, USA, for funding this research.